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Abstract-The lfigher-order discretization for determining the parametric dependence in partial diffel-ential equ- 
ations of diffusion-convection-reaction type is described. For approximation of space differential operators, the 
Stormer-Numerov formula with the O(h 4) accuracy is used. This method ~ out to be useful for investigating the 
parametric dependence in parabolic diffusion-convection-reaction equations representing the behavior of tubular flow 
reactors. 

Key words: Higher-order Discl-etizatioll, Stoimer-Numerov Fonlmla, Tubular How Reactor, Partial Differential Equa- 
tion, Continuation 

INTRODUCTION 

The systematic investigation for parametric dependence of 
steady s~tes, i.e., continuation, in partial differential equations is 
still a difficult problem. Several methods for continuation in or- 
dreary differential equations have been proposed and developed 
very extensively. Inthe meanwhile, the analysis of parametric de- 
pendence in partial differential equations is still at the very be- 
ginning although some algorithms for locating Hopf-bifurcation 
points have been published [Hassard and E1-Henawy, 1981; Jensen 
and Ray, 1982; Nandapurkar and Hlavacek, 1984]. A viable swat- 
egy for calculating parametric dependence in partial differential 
equations is to discretize the space differential operator and to 
apply continuation methods developed in ordinary differential equa- 
tions. The finite difference approximation of partial differential 
equations via method of lines may result in a large set of ordi- 
nary differential equations, and the calculation of multiplicity and 
stability in stationary as well as periodic branches may present a 
formidable task. 

The purpose of this paper is to take advantage of the Stormer- 
Numerov approximation with the O(h 4) accuracy and to apply 
this method to parabolic partial differential equations of ditRtsion- 
convection-reaction type. The Stormer-Numerov approximation 
is very important for the problems where storage limitation and 
computer time expenditure preclude standard second-order meth- 
cds. For the fourth-order approximation, a low number of mesh 
points can be used for a majority of chemical engineering prob- 
lems. Nandapurkar and Hlavacek [ 1984] demons~ated that higher- 
order discretization methods might provide important improve- 
ments of codes in terms of diminishing the required number of 
mesh points as well as the computer time for desired solution by 
using the Brusselator model to describe the trimolecular reac- 
tion. This approximation can be applied for calculation of para- 
metric dependence in tubular flow reactors. 
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GOVERNING EQUATIONS 

Consider an irreversible exothermic first-order reaction A --+ 
B taking place in tubular flow reactors. Mass and energy balances 
can be written in the following dimensionless form: 

Oy 1 32y aY~Da(l_y)exp(___~0 ~ (1) 
O'c PevO~ 2 3~ t l+~O) 

O0 1 020 O0 0 

subject to boundary conditions 
3y_ ~=0: Pevy-~-~ 0 

O0 Pe~0 ~=0 (3) 

oy ao _ 

Here y and 0 are dimensionless conversion and temperature. PeM 
and Peu are Peclet numbers for mass and heat transfer, respec- 
tively. Detailed descriptions of the parameters can be found else- 
where [Hlavacek and Hofmm-un, 1970]. 

In order to eliminate the first derivatives with respect to { in 
Eqs. (1) and (2), the following transfomlation of the conversion 
and the temperature is used: 

y-Y exp(P--~) (5) 

0=Oexp(~-g~). (6) 

After simple algebraic manipulation we can get 

~Y_ 1 ~2y Pevy 
~c PevO~ 2 4 

+D a{ exp (- - ~ ) -  V}expl exp ~ p@~)+ e| ] (7) 
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peu peu % 
ac PesO% ~ i .@+DAB exp T ~  exp ~(pe~peu) Y 

• ~ l-[3(O-Oc) 

subject to boundary conditions 

~=0: Pevy OY 
T -N =~ 
Peu O| 
TO-~-~=o (9) 

~=1 : ~-~Y+ OY ~=0 

Pe~  O0 o 
T o + - ~ = u .  (10) 

DISCRETIZATION OF SPATIAL OPERATOR 

It is obvious that the Stormer-Numerov formula can be appli- 
ed to Eqs. (7) and (8), which can be rewritten in the following 
simplified form: 

a2X JOX �9 l �9 
~ - ~ : C - 1 ~  g(X,~)I=s (11) 

Here the quantities X, C and g are defined by 

<:1  P:00<l 

g(X,g)= 

~-~Y+D a{ exp ( ~ -~ ) -  Y }expl exp (_ ~ ) + e O  

- P-~| D aBIexp(- P~-2~ exp{ }(Pe~ Peu) }Y 1 

bbol 
Let us review the Stormer-Numerov formula briefly�9 For a dif- 
ferential equation 

~ =R(X) (13) 

the finite difference approximation of Eq. (13) for N uniform 
meshes with a Slmcing h (0=X0 <X~ <'"<XN ~ <X~= 1) canbe ex- 
pressed as 

h ~ X,~ 2X,+XM=--(R, I+10R,+RM)+O(h 4) i=0, 1 , - ' , N  (14) 12 

Applying the Stormer-Numerov formula, Eq. (14), to Eq. (11) 
we can get 

112 i f {dR ,  1 dR, dX,+l"~ ] 
~X,-,-2 ~XP ~x,<=T~C l~---~ " + 10-~z%--~' ' ~(g, 1+ 10g,+gM) ~ 

i=l, 2, ,.., N-1. (15) 

Therefore the resulting set of ordinary differential equations de- 
rived from Eq. (15) can be rewritten in the following matrbr form: 

A-~- = 1-~22 CDX+Ag (16) 

where A and D are (N-1)x(N-1) tfidiagonal matrices: 

i00 10 1 0 0 .......... 0 01 10 10 .......... 0 
A= 0. 1101. 0 ....... 0. (17) 

............. 01101 

and 

L 0 1 1 2 1 0 0  .......... 0] 

and 

01  - 2 1 0  .......... 0 
D = / 0 0 : 1 2 ! 0 .  ....... 0. (lg) 

�9 0 1 2 1 / .  

In order to e~cpress Eq. (16) in an e~cplicit form for &_X/d% 
we must solve the equations with respect to the d<N/d'c variables. 
Since the coefficient matrix A is constant, we can invert the con- 
slant matrbr A and hence transform Eq. (16) to a set of ordinary 
differential equations: 

dc@=A-' (1--~2~ CD X+Ag]. (19) 
k h ~  ~ ~~j 

Then we can easily apply the continuation methods developed for 
ordinary differential equations to a set of 2(N- 1) differential equa- 
tions, Eq. (18). The continuation for tracing out the periodic as 
well as stationary branches was performed by using the software 
package AUTO [Doedel, 1980]�9 

It is also necessary to discretize the boundary conditions with 
the same O(h 4) accuracy. Boundary conditions, Eqs. (9) and (10), 
can be generalized in the following form: 

OX r (20) 

OX %=1: {~,X+~,~-'~ :y, (21) 

where the coefficient vectors, g0, ~0, 70, gl, ~1, andT, represent 

~o=~,: ~0:[-lll ~,:[lll y0:y,:[001. (22) 

After some algebraic manipulation we can obtain the following 
approximation formula for the first derivative at boundary ends 
with the O(h 4) accuracy: 

OX 1 + h + + + %:0:~=~-~(X0-2X,-X22X3)-T-~(7s 29s 15s 2f;) (23) 
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(24) 

ON 1 + + 

§ h ( 2~_3+ 15~fv_2+ 29~fv_ ~+7~) 

Substituting Eqs. (23) and (24) into Eels. (20) and (21), we can get 
the approximation formula at both ends with the O(h 4) accuracy. 
Eq. (19) together with the boundary conditions, Eqs. (21) and (22), 
results in a set of 2(N+l) ordinary differential equations. 

NUMERICAL EXAMPLES 

The multiplicity region in "parametric plane" Pe-Da for con- 
s~-E values of B, [3, e, % andN when the Peclet numbers for mass 
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Fig. 1. Multiplicity in tubular flow reactors with A-->B reac- 
tion (1]=6.0, ~=0.0, E=0.0, 0c=0.0, N=10). 
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Fig. 2. Bifurcation diagram in tubular flow reactors with A 
B reaction at Pe=2.0 (B=6.0, 6=0.0, E=0.0, 8c=0.0, N= 
10). 
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and heat dispersion are the same (Pe;:=Pe~=Pe), is depicted in 
Fig. 1. The unique steady s~te exists in area I while area II is the 
region of three steady states. There exists a range of Damk6hler 
number (Da:-Da~) at the constant Peclet number where the mul- 
tiplicity can occur. By raising the Peclet number this interval 
moves to higher values of Da, but the range of Da decreases. Fig. 
2 shows parametric dependence of Da on y(1) for the same values 
of parameters in Fig. 1 where y(1) is the outlet conversion of tu- 
bular flow reactors. There exist turning points at D%=0.05565 
and Da2=0.09864. In this figure solid and dotted lines represent 
stable and unstable steady states, respectively. The parametric de- 
pendence in Fig. 2 shows the existence of one, three, and one 
steady states as the value of Da increases. The values of Da (D% 
=0.05565, Da2=0.09864) to give turning points in Fig. 2 are in 
excellent agreement with exact values calculated by numerical 
simulation of Eqs. (1) to (4) as shown in Table 1. The difference 
between two methods has maximum 0.6% error because exact 
values of Da~ and Da2 are reported to be 0.056 and 0.098 with 
two significant digits, respectively [Kim and Park, 1999]. 

For given parameters in Fig. 3, Hlavacek and Hofmann [1970] 
found the cycles disappear in the interval of Pe= 1.6-1.8. Our cal- 
culation shows this Hopf bifurcation occurs at Pe= 1.7390. The 
eigenvalues at this Hopf bifurcation point in Table 2 guarantee 
the occurrence of limit cycles. The transient behavior in Fig. 3 

Table 1. A comparison of exact and approximate Damk6hler 
numbers at turning points 0]=6.0, ~=0.0, E=0.0, 0c = 
0.0, N=10) 

Exact Approximate Error (%) 
Pe 

Dal Da2 Dal Da2 Dal Da2 

2.0 0.056 0.098 0.05565 0.09864 0.6 0.6 
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Fig. 3. Transient behavior at the exit of tubular flow reactors 
with A ~ B  reaction (B=l l .0 ,  Da=0.2, 6=2.0, E=0.0, 0c 
=0.0, N=10~ Pe is: (a) 0.5, Co) 1.4, (c) 1.739 and (d) 1.750. 
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Table 2. Eigenvalues at Hopf bifurcation point (B=ll.0, Da= 
0.2, [3=2.0, E=0.0, 0c=0.0, N=10) 

_+0.4305• 10i 
0.258 l x  103.t_0.3043• 103 

-0.1433X 103+0.424 lX 10i 
-0.5455?< 102___0.4300• 
-0.8609• 10__0.2679X 10i 
-0.4479x 103 

-0.4654x 103• 0.1087x 10i 
0.2020x 103• 0.3954x 10i 

-0.9347x 102• 0.4343x 10i 
0.2645x 102• 0.3929x 10i 
0.4607x103 

clearly shows the Wansition from limit cycles to stable steady states 
at Pe=1.7390. 

: vector defined by Eq. (12) 
y, Y : conversion in original and transformed variables 
y(1) : exit conversion 

Greek Letters 
[3 h e a t  transfer coefficient between reacting fluids and 

cooling medium 
"c : dimensionless time 
0, | : dimensionless temperature in original and transformed 

variables 
e : dimensionless activation energy 

�9 dimensionless axial length 

CONCLUSIONS REFERENCES 

The Stormer-Numerov discretization with the O(h 4) accuracy 
is adopted to investigate the parametric dependence in partial dif- 
ferential equations of diffusion-convection-reaction type. The con- 
tinuation algorithms are very sensitive to the accuracy of start- 
ing steady states even for moderate Peclet numbers. Our s~rategy 
using the low number of mesh points with higher order accuracy 
represents the most promising approach for calculating paramet- 
ric dependence in a set of parabolic partial differential equations. 

This methcd may be useful in determining parametric depend- 
ence in other systems such as explosion, catalytic reactor, and 
flames in 1- and 2-dimensional spaces [Nandapurkar and Hla- 
vacek, 1984]. 

NOMENCLATURE 

A : matrix defined by Eq. (17) 
t3 : adiabatic temperature rise 
C �9 matrix definedby Eq. (12) 
D-. : matrix defined by Eq. (18) 
Da : D a m b h l e r  number 
f : defined by Eq. (11) 

�9 nonlinear source term defined by Eq. (12) 
h :spacing 
N : total number of mesh points 
PeM : Pecletnumber for mass dispersion 
Peu : Peclet number for heat dispersion 
R : defined in Eq. (13) 
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